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A B S T R A C T

A simulation-estimation approach is used to evaluate the efficacy of stock assessment methods that incorporate
various levels of spatial complexity. The evaluated methods estimate historical and future biomass for a situation
that roughly mimics Pacific herring Clupea pallasii at Haida Gwaii, British Columbia, Canada. The baseline
operating model theorizes ten areas arranged such that there is post-recruitment dispersal among all areas.
Simulated data (catches, catch age-composition, estimates of spawning stock biomass and its associated age
structure) generated for each area are analyzed using estimation methods that range in complexity from ignoring
spatial structure to explicitly modelling ten areas. Estimation methods that matched the operating model in
terms of spatial structure performed best for hindcast performance and short-term forecasting, i.e., adding
spatial structure to assessments improved estimation performance. Even with similar time trajectories among
sub-stocks, accounting for spatial structure when conducting the assessment leads to improved estimates of
spawning stock biomass. In contrast, assuming spatial variation in productivity when conducting assessments did
not appreciably improve estimation performance, even when productivity actually varied spatially. Estimates of
forecast biomass and of spawning stock biomass relative to the unfished level were poorer than estimates of
biomass for years with data, i.e., hindcasts. Overall, the results of this study further support efforts to base stock
assessments for small pelagic fishes on spatially-structured population dynamics models when there is a rea-
sonable likelihood of identifying the sub-stocks that should form the basis for the assessment.
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1. Introduction

Management strategies for many of the world’s major fisheries are
based on model-based harvest control rules (HCRs), which use the
outputs from stock assessments that fit population dynamics models to
available monitoring data (e.g., IWC, 2012). Population dynamics
models that underlie these stock assessments range from those that
consider only sex- and age-aggregated measures of biomass (e.g.,
ASPIC, Prager, 1992, 1994, 2002) to those that consider the sex, age,
stage and spatial structure of the fished population (e.g., Stock Synth-
esis, Methot and Wetzell, 2013; MULTIFAN, Fournier et al., 1998). The
type of model used for a stock assessment depends, inter alia, on the
model outputs needed to apply the HCR, and on the available data,
especially regarding the age and sex structure of the population.

Few stock assessments are currently based on population dynamics
models that attempt to capture the spatial structure of fish or in-
vertebrate populations, and those that do seldom involve a large
number of spatial areas (2–3 is most common; Punt, in press). The main
reason for this is that including a large number of areas in a population
dynamics model can increase the complexity of the model and hence
the number of estimable parameters. Most assessment analysts follow
the principle of parsimony, and thus select simple models with few
parameters to minimize the perceived variance of the estimates of the
model outputs. Another oft-mentioned reason for not adopting spa-
tially-structured stock assessments is lack of tagging data that would
provide information about movement rates (A.E. Punt, pers. obs). Un-
fortunately, it is well known that ignoring spatial structure or assuming
the incorrect spatial structure when applying a spatially-structured
stock assessment can lead to biased (and often very imprecise) esti-
mates of key model outputs, including estimates of spawning stock
biomass, fishing mortality and recruitment (in absolute terms and re-
lative to biological reference points) (e.g., Punt and Methot, 2004; Fu
and Fanning, 2004; Cope and Punt, 2011; Garrison et al., 2011;
Dougherty et al., 2013; Guan et al., 2013; Martien et al., 2013; Benson
et al., 2015; Goethal et al., 2015; McGilliard et al., 2015; Punt et al.,
2015). Furthermore, HCRs based on biased or imprecise stock assess-
ments can result in unintended ecological, economic, and social con-
sequences (Punt et al., 2016).

Of the few spatially-structured stock assessments that have been
developed, most have been applied to relatively long-lived species such
as groundfish and tunas (but see Dichmont et al., 2006; O’Neil et al.,
2014; De Moor and Butterworth, 2015). Small pelagic species (e.g.,
sardines, anchovies, herrings) form the basis for some of the world’s
largest fisheries. However, with the exception of Cunningham et al.
(2007) and de Moor and Butterworth (2015), pelagic species have not
been assessed using spatially-structured methods of stock assessment.
Ignoring spatial structure in management decision making for Pacific
herring Clupea pallasii has been a concern among local and traditional
knowledge holders in North Pacific communities where concentrated
commercial fishing takes place on increasingly condensed spawning
stocks (e.g., of herring for roe) considered critical for subsistence, trade,
and other uses (Jones, 2000; Powell, 2012; Thornton et al., 2010;
Thornton and Kitka, 2015; Levin et al., 2016). Further, commercial
fishers and shoreworkers have identified several imperatives for Pacific
herring management, including the need to build a collaborative un-
derstanding of the state of herring in its shared ecosystem,1 with the
hope that this will better acknowledge the livelihoods and fishing
communities that depend on the herring fishery. This understanding
could include appropriately accounting for spatial structure in stock
assessments.

Spatial structure in small pelagic fishes exists at both large and small
spatial scales. For example, the range of the northern subpopulation of
Pacific sardine (Sardinops sagax) changes as a function of biomass and/
or environmental conditions (e.g., Clark and Janssen, 1945); if ignored,
this has been shown to lead to biased estimates of management-related
quantities, including biomass (Hurtado-Ferro et al., 2014). Our paper
focuses on relatively small-scale (10–100 s of km rather than
100 s–1000 s of km) spatial structure, with a focus on Pacific herring in
British Columbia, Canada. The distribution and abundance of Pacific
herring has varied substantially even within conventional ‘stock areas’
during the era of modern fisheries management. Nevertheless, current
British Columbia herring stock assessments are based on the assumption
that it is valid to pool data into five major and two minor stocks
(Benson et al., 2015). Beyond the performance of stock assessment
models, mismatches between the scales of observed or perceived po-
pulation structure and aggregations used in assessment models can
have consequences throughout the social-ecological system, including
loss of trust in management bodies and conflict, in part because of the
fine spatial scale at which traditional herring harvest practices occur
(Levin et al., 2016). Problems of mismatch or fit among institutions of
governance and social-ecological contexts are recognized more broadly
as an enduring problem in the resource management literature (e.g.,
Epstein et al., 2015).

This paper uses a simulation-estimation approach to evaluate the
consequences, in terms of the bias and precision of estimates of his-
torical and projected spawning stock biomass, of various approaches to
the assessment of stocks of short-lived fishes that exhibit spatial struc-
ture, based on the biological characteristics of Pacific herring at Haida
Gwaii, British Columbia, Canada. Management for Pacific herring at
Haida Gwaii is based on biomass estimates projected beyond the last
year with data. Thus, the quantities used to evaluate estimation per-
formance in this study include estimates of historical spawning stock
biomass (‘hindcast estimates’) and projected biomass.

This paper aims to improve the basis for conducting stock assess-
ments for small pelagic species, such as Pacific herring. Consequently,
the key questions the analyses address are: (a) Are estimates of
spawning stock biomass unbiased and precise (i.e., on average do the
estimates equal the true values and is there little variation in estimates
among replicate simulations) if the structure of the estimation method
matches that of the spatially-explicit operating model? (b) How poor
are the estimates of spawning stock biomass if the spatial structure of
the operating model and estimation method differ? (c) How much
spatial structure in the estimation method is sufficient to overcome any
bias? and (d) How robust are the conclusions to key assumptions of the
operating model, including the sample sizes for the data available for
assessment purposes?

2. Materials and methods

2.1. Overview

An operating model is used to generate simulated data sets based on
various specifications for the underlying system being assessed, in-
cluding the number of ‘sub-stocks’2 (Table 1). It is spatially-structured
and roughly mimics the population dynamics and fishery for Pacific
herring (e.g., post-recruitment dispersal among sub-stocks, a fishery
directed toward spawning fish only, and the possibility that an entire
sub-stock skips spawning in a particular year). It includes multiple sub-
stocks that are linked through dispersal. The generated data sets are
analyzed using stock assessment methods (estimation methods) that
range in the degree to which the assumptions of population structure
match those of the operating model, from matching exactly to being

1 See for example the open letter from the United Fisherman and Allied Workers Union
to the Nuu-chah-nulth Tribal Council and British Columbia commercial herring fishermen
(https://www.hashilthsa.com/news/2015-01-08/support-united-fisherman-and-allied-
workers-union-herring-fishery).

2 The term “sub-stock” is used here as these populations are neither demographically
nor genetically distinguished.
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based on a spatially-aggregated population dynamics model (see Fig. 1
for an overview of the simulation process).

2.2. The operating model

The operating model includes a number of sub-stocks (10 for most
of the analyses for this paper in which case “area” is synonymous with
“sub-stock”) because several studies (e.g., Hay et al., 1989; Stick et al.,
2014; Siple and Francis, 2016) have identified sub-stocks (or sections)
throughout the range of Pacific herring. Each of the sub-stocks is re-
presented using an age-structured model that keeps track of whether an
animal is mature or not. The sub-stocks are arranged such that sub-
stock P (P=9 for the baseline operating model) is next to sub-stock 0
(Fig. 1), with the consequence that there is diffusion between all sub-
stocks proportional to the “distance” between them. The sequential
steps that occur each year to update the population dynamics (Eqns
T1.1–T1.4) are: (a) removal by natural mortality, (b) diffusion of ani-
mals aged 1 and older among sub-stocks, (c) maturation, (d) fishing
mortality, and (e) spawning and recruitment. The fishery is primarily
for roe so selectivity is assumed for these simulations to be equivalent to
being mature, and the fishery is assumed to occur on each sub-stock
separately, prior to spawning (as well as any density-dependent re-
sponse; Eqn T1.4a). The model treats mature and immature animals as
separate groups, with maturation modeled explicitly (Eqn T1.2). The
catches during year y are consequently only of animals that were ma-
ture at the start of year y or that matured during year y (Eqn T1.5).
Natural mortality can change over time as a random walk (Eqn T1.8-9)
and be subject to random deviations (Table 2).

The data generated by the operating model are: catches by area
(assumed to be measured without error), indices of spawning stock

biomass by area (with log-normally distributed observation errors),
sampled age composition of catches by area, and sampled age compo-
sition of the spawning stock biomass by area. Age-composition data by
area are multinomial samples from the true catches-at-age and
spawning biomass age-structure, with effective sample sizes propor-
tional to the catch-in-weight (Eqn T1.6) for the catch age-compositions
and independent of area for the spawning biomass age-structure.

The operating model is initialized with an arbitrary age structure
and projected forward until it reaches unfished equilibrium. It is then
projected forward for 20 years (denoted as years −20 to 0) under pre-
specified fishing mortality (in expectation FMSY, the fishing mortality
rate at which MSY is achieved given all sub-stocks are exploited at the
same rate and diffusion and recruitment are not stochastic; DFO, 2017)
and stochastic recruitment (and under some scenarios, stochastic nat-
ural mortality) so that the age structure of the operating model popu-
lations at the start of the first year of the assessment is neither in
equilibrium nor in an unfished state in expectation. The operating
model is then projected forward a further 55 years (years 1–55) with
annual fishing mortality rates that are constant over space (for both the
base-case operating model and most of the sensitivity scenarios, see
Section 2.5 below) and set based on achieving a pre-specified propor-
tion of the global FMSY (e.g., Fig. 2a). The remaining biological para-
meters of the operating model (weight-at-age, maturity-at-age, and fe-
cundity-at-age) are summarized in Fig. 2b–d.

When an estimation method is applied to spatially-aggregated data,
the generated data are pooled over areas without weighting by catch or
spawning stock biomass (although the approach used to generate the
age-composition essentially weights by abundance). The value for the
extent of variation in the recruitment, σR, is determined by projecting
the operating model forward for 10,000 years with no catches and

Table 1
The population dynamic equations underlying the operating models and estimation methods. Table 2 provides the definitions for the symbols. The values for the
first of annual deviations (i.e. for year −20) are sampled from their stationary distributions.
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selecting σR so that the coefficient of variation of the sum of recruitment
over sub-stock equals the pre-specified extent of variation.

2.3. The estimation methods

The estimation methods mimic the operating model in terms of
basic population dynamics (Eqns T1.1–T1.9), except that natural mor-
tality is assumed to be constant, and independent of age, sub-stock and
time. Seven variants of the estimation method are considered:

• EM1. The region to be managed is assessed ignoring sub-stock-
structure.

• EM2. Sub-stocks 0–4 and 5–9 are assessed as separate units (i.e., two
assessment sub-stocks); a single recruitment parameter α (as defined
below) is estimated.

• EM3. Sub-stocks 0–1, 2–3, etc. are assessed as separate units (i.e.,
five assessment sub-stocks); a single α parameter is estimated.

• EM4. Each sub-stock is assessed separately (i.e., 10 assessment sub-
stocks); a single α parameter is estimated.

• EM5. Sub-stocks 0–4 and 5–9 are assessed as separate units (i.e., two
assessment sub-stocks); αp is estimated for each assessment sub-
stock.

• EM6. Sub-stocks 0–1, 2–3, etc. are assessed as separate units (i.e.,
five assessment sub-stocks); αp is estimated for each assessment sub-
stock.

• EM7. Each sub-stock is assessed separately (i.e., 10 assessment sub-
stocks); αp is estimated for each assessment sub-stock.

The parameters estimated are: the parameters of the stock-recruit-
ment relationship (the slope of the stock-recruitment relationship at the
origin, αp – which determines the productivity of the population – and
unfished recruitment), the diffusion rate (see Eqn T1.10), the deviations
in recruitment about the stock-recruitment relationship for each year
with catches, and the annual deviations in recruitment for the first year
of the projection period. The model is implemented using AD Model
Builder (Fournier et al., 2012). Natural mortality is set to 0.58 yr−1 for
all years following DFO (2015), and is assumed known for the base-case
operating model and most of the sensitivity scenarios. The annual
fishing mortality rates are not treated as estimable parameters, but are

Fig. 1. Overview of the structure of a single
simulation, highlighting spatial structure of the
baseline operating model (sub-stocks= circles;
note that diffusion can occur between non-ad-
jacent sub-stocks) and the sub-stock structure
underlying estimation models (EMs) 1–7
(boxes). The red arrows indicate the major
routes of migration (although animals can
move to more than adjacent sub-stocks). (For
interpretation of the references to colour in this
figure legend, the reader is referred to the web
version of this article.)

Table 2
Descriptions of the symbols included in the specification of the operating model
and estimation methods.

Symbol Description

Cp y, Catch-in-weight for sub-stock p and year y
Cp y a, , Catch of animals of age a in sub-stock p during year y
Dp y, Egg production by sub-stock p during year y
∼Dp y, Spawning stock biomass of sub-stock p during year y

Fp y, Fishing mortality on mature animals for sub-stock p during year y

M Mean rate of natural mortality (set to 0.58 yr−1)
Mp y a, , Rate of natural mortality by sub-stock, year and age
Nm p y a, , , Number of animals of maturity stage m (mature/immature) in sub-

stock p that are of age a at the start of year y

Nm p y a, , ,
1 Number of animals of maturity stage m in sub-stock p that are of age a

after natural mortality and dispersal during year y

Nm p y a, , ,
2 Number of animals of maturity stage m in sub-stock p that are of age a

after maturation and fishing mortality during year y
dj p, “distance” between sub-stocks j and p, nominally |j-p|

fa Proportion of animals of age a that are mature at age a (Fig. 2b)

f͠a Proportion of immature animals of age a that mature;

= − −− −f f f f( )/(1 )a͠ a a a1 1
ga Fecundity as a function of age (Fig. 2c)
wa Weight as a function of age (Fig. 2d)
x Maximum (lumped) age-class (set to 10 years)
α β,p p Stock-recruitment parameters for sub-stock p (βp is assumed to be a

constant over sub-stocks and is set to 100)
εp y, The recruitment residual for sub-stock p and year y;

δ Parameter that determines the spatial auto-correlation in recruitment
λp y, Deviations in recruitment about the stock-recruitment relationship (by

sub-stock)
Ωj p, Expected proportion of 1+ animals from sub-stock j that diffuse to sub-

stock p; the realized diffusion rate; Ωj p y, , is a Dirichlet sample about Ωj p,

Σ Variance-covariance matrix for the recruitment deviations
ρM1 Extent of auto-correlation in natural mortality
ρM2 Extent of sub-stock-specific auto-correlation in natural mortality
σM1 Standard error of the annual deviations in natural mortality
σM2 Standard error of the sub-stock-specific deviations in natural mortality
σM2 Standard error of the age-specific deviations in natural mortality
σR Standard error of the annual deviations in recruitment
σΩ Parameter that determines diffusion – selected to achieve a pre-

specified proportion of animals leaving the sub-stock
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rather calculated using the ‘hybrid’ method (Methot and Wetzell,
2013). The estimation model is fitted ignoring that the deviations in
recruitment may be correlated spatially. The estimation methods are
provided with sampling CVs for the index of abundance and effective
sample sizes for the age-composition data. The CVs for the index are
always taken to be that for a single sub-stock, while the effective sample
sizes for the age-composition data are set to the numbers of animals
aged. The assumed CVs and sample sizes are correct for EMs 4 and 7,
but the CV will somewhat overestimate variation and the effective
sample sizes will underestimate variation for the estimation methods
that pool data spatially.

2.4. Performance metrics

The results of the simulations are summarized by the ability to es-
timate total (over all sub-stocks) spawning stock biomass (SSB; ∼D ) over
time. Particular focus is on the spawning stock biomass at the start of
the second year with catches (∼D2),3 the spawning stock biomass in the
last year with monitoring data (∼Dlast; where year ‘last’ is year 50), and
the ratio of ∼Dlast to ∼D2. The relative errors between the true and esti-
mated model outputs are summarized by the mean relative error (MRE;

i.e. bias) and the median absolute relative error (MARE, which accounts
for bias and variability):

= =
− −

MRE Mean MARE Median
x x

x
x x

xi i
i i

i

i i

i

Est True

True

Est True

True
(1)

where xi
True is the true value of the quality x for the ith replicate si-

mulation, and xi
Est is the estimated value of the quality x for the ith

replicate simulation.
The aforementioned outputs ∼D2,

∼Dlast, and
∼ ∼D D/last 2 evaluate the es-

timation model’s hindcast ability. However, management advice is
often based on forecasts. Therefore, the operating model is used to
project spawning stock or sub-stock biomass ahead an additional five
years, with only catch data available to the estimation methods for
years 51–55. The ability to estimate the spawning stock biomass in
years 51–55 is evaluated by computing MREs and MAREs for ∼

+Dlast 5.
Management advice for herring in Canada is based on spawning stock
biomass relative to unfished spawning stock biomass (Benson et al.,
2015; DFO, 2016). Hence, performance metrics are reported for
∼ ∼

−∞D D/last where ∼
−∞D is the unfished spawning stock biomass (the

spawning stock biomass in equilibrium when the only source of mor-
tality is due to natural causes). Actual management advice is based on
one year projections so Supplementary Table 1 provides MAREs for
∼

+Dlast 1, which are intermediate between those for ∼Dlast and
∼

+Dlast 5.
Erroneously estimating spawning stock biomass has additional

Fig. 2. Operating model parameters: (a) fishing mortality on mature animals (expressed relative to FMSY), (b) proportion maturity-at age, (c) relative fecundity-at-
age, and (d) weight-at-age.

3 The first year is impacted by assumptions regarding initial conditions so year 2 is
more reflective of estimation performance for the initial years of the assessment.
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implications for management, such as depletion of the target species, local
depletion of spawning sites, and impacts on the local community, which
depend on herring to satisfy traditional use, including subsistence re-
quirements. As an approximate way to evaluate the biological implica-
tions of errors in estimating spawning stock biomass, the probability of
the estimate of spawning stock biomass from the assessment being more
than 40% larger than the true spawning stock biomass at the sub-stock
level is reported. Undesirable levels of resource depletion would be ex-
pected if management measures such as catch limits were based on such
substantially overestimated estimates of spawning stock biomass. The
probability of estimates that are 40% or more smaller than the true values
are also reported, as such errors could lead to underutiltization. The value
of 40% is somewhat arbitrary, but reflects the average extent of error
associated with data-rich stock assessments of groundfish and coastal
pelagic species off the US west coast (Ralston et al., 2011). This metric is
easy to calculate for the 10 sub-stock estimation methods (EMs 4 and 7)
because there is a 1-1 match between sub-stocks in the operating model
and the assessment sub-stocks in the underlying estimation method.
However, this is not the case for other estimation methods. Consequently,
the estimate of spawning stock biomass for a sub-stock that is assessed in
combination with other sub-stocks is the estimate of spawning stock
biomass for the entire assessed area divided by the number of sub-stocks
in that area, i.e. for EM5 under the baseline operating model, the estimate
of spawning stock biomass for sub-stock 0 is the estimate for sub-stocks 0
and 1 combined divided by 2.

2.5. Scenarios

The base-case scenario (Table 3) sets the values for key parameters
to reference levels. It reflects a scenario that is deliberately para-
meterized so that spatially-aggregated estimation methods may perform
adequately (e.g., by assuming that productivity does not vary spatially
and that fishing mortality is the same for each sub-stock). Sensitivity
analyses were conducted, by varying several of the features of the base-
case scenario in turn, to explore the consequences of factors that may
impact estimation performance (Table 3). The sensitivity scenarios
consider sensitivity to spatial variation in recruitment, natural mor-
tality, and productivity as well as the possibility that mean natural
mortality varies over time. Most of the sensitivity scenarios involve
changing a parameter value, but some are more complex. The scenario
with fishing mortality proportional to biomass (A13) scales total fishing
mortality each year by sub-stock proportional to the spawning stock
biomass by sub-stock, keeping the total fishing mortality the same. The
skipped spawning scenario (A15) involves selecting three of the sub-
stocks at random each year and assuming that they do not spawn that
year (so that there is neither catch nor spawning from the sub-stock –
and hence no data on spawning stock biomass) – the fishing mortality
rates for the other sub-stocks are set to the base-case values for this
sensitivity scenario. The skipped spawning scenario is an extreme form
of the observation (co-author HK pers. comm.) that some proportion of
animals that would spawn at some spawning sites do not. The extent of
diffusion in sensitivity scenario A16 is based on a Dirichlet sample size
of 5, which implies that for an expected diffusion rate of 0.2, 90% of the
actual diffusion proportions will range between ∼0 and 0.86. For each
combination of operating model and estimation method, 250 simula-
tions are conducted to ensure that results are sufficiently precise to
draw inferences.

The fishing mortality pattern in Fig. 2a is quite informative. Con-
sequently, sensitivity scenarios A17 and A18 explore the consequences
of different patterns of fishing mortality. Sensitivity scenario A17 ex-
plores the case in which fishing mortality is 0.7 in expectation from
years −20 to 55, while sensitivity scenario A18 explores the case in
which expected fishing mortality increases by 50% over the years 1–25
and reduces to its year-0 value in year 50 (and is constant thereafter).

The base-case scenario is based on 10 sub-stocks so all of the

estimation methods assume either correct number of sub-stocks or a
fewer number. Sensitivity scenarios A19 and A20 consider situations in
which there is only one sub-stock (A19) or five sub-stocks (A20). These
sensitivity scenarios involve using the areas in operating model (of
which there are 10) and that one sub-stock may be found in multiple
areas, and hence replacing Equation T1.2 by:
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where q denotes the set of areas in which sub-stock p is found.
Table 4 lists the scenarios related to values for the coefficient of

variation (CV) for the index of spawning biomass and the effective
sample size for the age-composition data. Tables 3 and 4 involve single
changes to the base-case operating model, but the changes may in-
teract. Table 5 therefore lists four sensitivity scenarios that involve
changing multiple features of the operating model at once, which initial
analyses suggested may be consequential individually.

3. Results

3.1. Base-case results

It is illustrative to examine the behavior of the estimation methods
for a single replicate simulation before examining the results of multiple
simulations. Fig. 3 shows the time-trajectories of fishing mortality, re-
cruitment, spawning stock biomass and catch for a single replicate si-
mulation. Results are shown by sub-stock, although there is only one
time-trajectory for fishing mortality because it does not vary spatially
for the base-case operating model (Table 3). The base-case scenario is a
“highly informative case” in that fishing mortality is spatially constant,
but varies substantially over time (Fig. 3a), leading to considerable
contrast in spawning stock biomass (Fig. 3c). Estimation methods
would be expected to perform better for this situation than for one with
little temporal variation in fishing mortality and hence biomass (Punt,
1995, 1997; Magnusson and Hilborn, 2007). Recruitment varies con-
siderably among years and sub-stocks (Fig. 3b), even though there is
spatial auto-correlation in the recruitment deviations. The extent of
variation in spawning stock biomass over time (Fig. 3c) is much smaller
than in recruitment (Fig. 3b) because (a) spawning stock biomass
consists of multiple age classes, which dampens the effects of

Table 4
Specifications of operating model scenarios related to data.

Abbreviation/
description

CV of
abundance
indices

Effective sample size
for the survey age-
composition data (by
sub-stock)

Effective sample size
for the catch age-
composition data (in
total)

A0. Base case 0.3 100 200
B1. High

uncertainty
0.5 50 100

B2. Low
uncertainty

0.2 200 500

Table 5
Specifications for the scenarios with multiple changes from the base-case sce-
nario.

Abbreviation/description Changes from the base-case scenario

C1 Productivity variation & high diffusion
C2 Productivity variation & stochastic diffusion
C3 Productivity variation. =σ 0.2M1 & =ρ 0.7071M1
C4 Productivity variation & low diffusion
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recruitment variation, (b) productivity (in the form of the value of the
slope of the stock-recruitment relationship at the origin, αp in Eqn
T1.4a) is the same for each sub-stock, and (c) there is diffusion among
sub-stocks (20% of the 1+ biomass migrates from each sub-stock each
year). The synchrony in operating model biomass suggests that EM1,
which pools data spatially, may perform adequately for the base-case
operating model.

The estimation methods are generally able to capture the broad
trends in spawning stock biomass when biomass is scaled to the level of
an average sub-stock, across all estimation methods (Fig. 4b, c) The
estimates of spawning stock biomass are not sensitive to whether the
estimation method estimates a single αp for all sub-stocks or whether αp
is estimated by sub-stock (contrast the results for EMs 2, 3, and 4 in
Fig. 4b with those for EMs 5, 6 and 7 in Fig. 4c). The estimates from
EMs 1, 2 and 5 (EMs that consider a single or two sub-stocks when
conducting assessments; Fig. 1) are similar. These EMs over-estimate
spawning stock biomass between years 12 and 15 and under-estimate
peak abundance for years 15–20 and 33–40. In contrast, EMs 3, 4, 6 and
7 are able to mimic operating model biomass better than the simpler
estimation methods, although EMs 3 and 6 perform poorer than EMs 4
and 7 for some years (e.g. 8–15).

EMs 3, 4, 6 and 7 (and to a lesser extent 2 and 5) are close to

unbiased (in median terms) over the historical period, while EM1 and
EM2 lead to the widest distributions of relative error (Fig. 5). There is
little benefit to assessing the region as two sub-stocks rather than as one
sub-stock (contrast the results for EM1 and EM2), although EM2 is less
biased than EM1. Including five sub-stocks in the assessment (EM3)
leads to narrower relative error distributions, but EM4 performs best in
this regard. Similarly, the performance metrics indicate close to un-
biased estimates for ∼D2,

∼Dlast, and
∼ ∼D D/last 2, but with markedly lower

MAREs for EMs 4, and 7 than EMs 1, 2 and 5 (Table 6). Performance
metrics suggest there is little benefit to moving from a single sub-stock
to a two sub-stock assessment, though EMs 4 and 7 outperform EMs 3
and 6 quite substantially for the three model outputs, demonstrating
potential benefits of moving to a 10 sub-stock estimation method.

The relative error distributions broaden towards the end of the
hindcast period because the ability to estimate the size of a year class
depends on how often it is monitored in fisheries and surveys; the co-
horts that were spawned most recently are not as well monitored as
those that were spawned prior to this. In addition, and as expected, the
forecast ability of the estimation model is markedly poorer than its
hindcast ability, with the relative error distributions broadening sub-
stantially after year 50 (Fig. 5): MARE increases markedly from year 50
to year 55 (Supplementary Table 1). The benefits of conducting

Fig. 3. Time-trajectories of operating model fishing mortality, recruitment, spawning stock biomass, and catch for a single replicate simulation based on the base-case
specifications. Panels (b)–(d) show results for each of the ten sub-stocks. The red vertical lines denote when the first data used by the estimation methods are
available, and the green vertical lines denote the start of the projection period. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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assessments with the correct number of sub-stocks are reduced when
the aim is to estimate future spawning stock biomass, given only a time-
series of catches. This is evident based on the MAREs for the ∼

+Dlast 5,
which are much higher than those for ∼D2 and ∼Dlast, with almost no

improvement in estimation performance for the most complex estima-
tion methods compared to the simpler estimation methods for beyond
two years into the future (Supplementary Table 1).

In relation to the ability to estimate spawning stock biomass relative
to the unfished spawning stock biomass, except for EMs 4 and 7, the

Fig. 4. Time-trajectories of estimated spawning stock biomass by sub-stock for a single replicate based on the base-case specifications (black lines) and average
aggregate spawning stock biomass (blue line) (a), along with the estimates of spawning stock biomass (expected spawning stock biomass by sub-stock) from the seven
estimation methods (black lines) (b,c). The green vertical lines denote the start of the projection period. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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estimates of ∼ ∼
−∞D D/last are close to unbiased (MRE < 3%). The esti-

mation variability is such that the MAREs for ∼ ∼
−∞D D/last are very similar

among the EMs. It is sometimes argued that ratios of biomass are es-
timated better than biomass in absolute terms (e.g., Punt et al., 2002;
Magnusson and Hilborn 2007), but that argument is not supported here,
with the MAREs for ∼ ∼D D/last 2 and ∼ ∼

−∞D D/last larger than (or of similar
magnitude to) those for ∼Dlast (Table 6).

The probabilities of over-estimating spawning stock biomass by sub-
stock are very similar for EMs 1, 2 and 5 at about 20% (increasing to
30% for forecasted biomass), while applying EMs 3 and 6, and to an
even greater degree EMs 4 and 7, leads to lower probabilities (Table 6).
The probability of substantially underestimating biomass is much lower
than overestimating it, particular in years 2 and 50, and particularly for
EMs 4 and 7. Again, however, when forecast ability is considered, there
are no appreciable differences amongst any of the seven estimation

methods (Table 6, column Year 55 “probability error” > 40%).

3.2. Sensitivity analyses

3.2.1. Single factor sensitivity scenarios
Allowing for spatial variation in productivity (log-normal variation

in the slope at the origin of the stock-recruitment relationship with a CV
of 0.5; scenario A0) leads to slightly poorer estimation performance for
most EMs compared to the base case (Fig. 6b; Supplementary Table 1).
The probabilities of estimation errors> 40% and<−40% also in-
crease for almost all except EMs 4 and 7, with spatial variation in
productivity. The effects of the changes in estimation performance are
particularly evident for EMs 1, 2, 3, 5 and 6, but are largest for EM1.
Estimating spatial variation in productivity (EMs 5, 6 and 7) improves
estimation performance, but not by much (Supplementary Table 2).

Fig. 5. Time-trajectories of percentage relative error of spawning stock biomass for EMs 1–4 for the base-case specifications (the results for EMs 5–7 are visually
identical to those for EMs 2–4). The light shading encompasses 90% of the distributions and the dark shading 50%, while the white line denotes the time-trajectory of
median relative errors. The green vertical lines denote the start of the projection or forecast period. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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The ability to estimate model outputs is sensitive to the extent of
recruitment variation, with higher MAREs and probability of errors>
40% and<−40% compared to the base case for higher recruitment
variation, and vice versa (sensitivity scenarios A1 and A2;
Supplementary Table 2). Forecast performance deteriorates more than
the hindcast performance when recruitment variation exceeds the base-
case level. This is not surprising given the estimation method is not
provided with data to estimate future recruitment.

Estimation performance also deteriorates when natural mortality
varies over time (sensitivity scenarios A3-A7), particularly when there
is serial auto-correlation in natural mortality (sensitivity scenarios A5
and A7; Supplementary Table 2 and Fig. 6c). The MAREs for the pre-
viously best performing estimation methods (EMs 4 and 7) deteriorate
the most compared to the base-case scenario when natural mortality is
time-varying because these EMs are now mis-specified, but they still
perform best among the EMs for the scenarios with time-varying natural
mortality. The effect of time-varying natural mortality is most marked
for the forecasts.

Assuming that recruitment is spatially-independent (sensitivity
scenario A10; Supplementary Table 2 and Fig. 6d) leads to poorer es-
timation performance compared to the base-case scenario, for the es-
timation methods where population dynamics models differ from the
underlying spatially-structured operating model (i.e., EMs 1, 2, 3, 5 and
6).

Inclusion of skipped spawning in the operating model (sensitivity
scenario A15) leads to poor estimation performance for all estimation
methods (Supplementary Table 2 and Fig. 6f), but particularly those
based on population dynamics models that do not match the operating
model (EMs 1, 2, 3, 5 and 6). The high MAREs for these estimation
methods are due in large part to negative bias in the estimates of
spawning stock biomass (Supplementary Table 2). Negative bias arises
for the estimation methods that pool data spatially because skipped
spawning leads to an index of spawning stock biomass that is negatively
biased owing to the exclusion of information for some sub-stocks from
the index. In contrast, EMs 4 and 7 treat the lack of data for sub-stocks
in some years as missing information, which does not lead to bias, but
does increase estimation variation owing to the lack of data relative to
that available for the base-case scenario. The probability of errors>
40% is much lower for EMs 1, 2, 3, 5 and 6 than for the base-case
scenario for years 50 and 55, but the probability of errors<−40%
or>40% is correspondingly higher (Fig. 6f). This is due to the negative
bias associated with the estimates of spawning stock biomass.

Stochastic diffusion (sensitivity scenario A16; Supplementary
Table 2 and Fig. 6g) leads to higher MAREs for the estimation methods
that are correctly specified in expectation (EMs 4 and 7). However, this
scenario also leads to the lowest MAREs, relative to the other scenarios,
for the forecast biomass. However, the probabilities of errors> 40% at
the sub-stock level are higher relative to the other scenarios, for all
estimation methods, including EMs 4 and 7, the performances of which
are markedly poorly for sensitivity scenario A16 than for the base-case
scenario (Fig. 6g vs a).

As expected, less informative time-trajectories of fishing mortality
lead to higher MAREs, particularly in the forecast years, although the
relative ranking of the seven EMs remains unchanged (sensitivity sce-
narios A17 and A18; Supplementary Tables 1 and 2). As expected, the
differences among the estimation methods in terms of MAREs is lower
when there are only five true sub-stocks (sensitivity scenario A20;
Fig. 6h) and particularly when there is only one true sub-stock (sensi-
tivity scenario A19; Fig. 6i). The MAREs are essentially identical among
the seven EMs when there is only one true sub-stock (generally< 0.2
for all model outputs). EMs 4 and 7 are outperformed by the other EMs
in terms of the probability of errors> 40% in years 2 and 50 for this
sensitivity scenario (Supplementary Table 2).

The results are not sensitive to the extent of diffusion (sensitivity
scenarios A8 and A9) or spatial and temporal variation in fishing
mortality (sensitivity scenarios A11, A12, A13, and A14).

The ability to estimate the model outputs depends predictably on
the quantity of the data, i.e., the MAREs and the probability of er-
rors> 40% or<−40% increase when there are less informative data
than for the base-case scenario (sensitivity scenarios B1 and B2;
Supplementary Table 2).

3.2.2. Multi-factor sensitivity scenarios
Combining high diffusion with spatial variation in productivity

(sensitivity scenario C1; Supplementary Table 2 and Fig. 6j) leads to
very similar results to sensitivity scenario A0, which had 20% diffusion,
although the probability of errors> 40% is lower for the mis-specified
estimation methods (1, 2, 3, 5 and 6), and particularly for EMs 4 and 6.

Combining spatial variation in productivity with either stochastic
diffusion (sensitivity scenario C2; Supplementary Table 2 and Fig. 6k)
or time-varying natural mortality (sensitivity scenario C3; Supplemen-
tary Table 2 and Fig. 6l) generally leads to the largest MAREs and
probabilities of errors> 40%. As was the case for sensitivity scenario
A16, the performances of EMs 4 and 7, which are still better than those
of the remaining EMs, are markedly poorer for these sensitivity sce-
narios than the remaining cases, with sensitivity scenario C3 leading to
poorest performances overall.

4. Discussion and conclusions

An underlying principle of statistical modelling is to select a model
structure that balances realism (which results in more complex models
with additional parameters) with parsimony (which reduces estimation
variance). Most marine species exhibit spatial structuring, but almost
all stock assessments are based on population dynamics models that
ignore spatial structure. The aim of this paper was to identify when
simple and more complex estimation methods will lead to estimates of
spawning stock biomass that have the least error for situations that are
representative of small pelagic fishes, such as Pacific herring. The
measures of error considered include the MARE, which combines bias
and variability, for estimates of spawning stock biomass, and the
probability that error in estimating spawning stock biomass by sub-

Table 6
Values for the performance metrics for the simulations using the base-case specifications for the operating model.

∼D2
∼Dlast

∼ ∼D D/last 2
∼

+Dlast 5
∼ ∼

−∞D D/last Probability error>40% Probability error<−40%

MRE MARE MRE MARE MRE MARE MRE MARE MRE MARE Year 2 Year 50 Year 55 Year 2 Year 50 Year 55

EM1 7.6 16.7 2.9 12.3 8.5 22.1 2.2 40.2 0.2 15.1 0.22 0.20 0.30 0.03 0.03 0.23
EM2 8.3 16.9 4.0 13.1 15.2 24.0 −0.8 37.7 0.5 15.4 0.23 0.20 0.29 0.05 0.03 0.25
EM3 8.6 13.5 4.9 10.9 12.6 16.2 −1.7 35.5 0.1 11.9 0.21 0.15 0.30 0.05 0.03 0.26
EM4 2.7 3.7 −1.0 7.2 2.5 7.8 −4.7 36.6 −11.1 11.8 0.03 0.07 0.28 0.01 0.04 0.28
EM5 7.2 16.6 4.0 13.4 15.4 23.9 0.9 38.0 0.9 15.4 0.23 0.20 0.29 0.05 0.03 0.26
EM6 8.2 13.0 5.6 11.2 12.5 16.6 −0.2 35.8 2.0 13.1 0.21 0.15 0.30 0.05 0.03 0.27
EM7 2.4 3.6 −0.9 6.8 1.6 7.9 −5.4 34.9 −10.2 11.9 0.02 0.07 0.27 0.00 0.04 0.29
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stock exceeds 40% in absolute terms.
In the present study, the simulated sub-stocks have similar time-tra-

jectories of spawning stock biomass for many of the scenarios because
there is diffusion and because recruitment and fishing mortality are
spatially correlated. However, even with similar time-trajectories among
sub-stocks, accounting for spatial structure when conducting the assess-
ment leads to improved estimates of spawning stock biomass for the
hindcast period and for short-term (1–2 year) forecasts. Predictably, the
estimation methods that match the operating model perform best. This
conclusion was true across all the sensitivity scenarios considered, even
when all of the estimation methods were mis-specified to some extent.

However, estimating sub-stock-specific values for the slope of the origin
did not improve estimation performance, likely because the effects of
variation in this slope are reduced owing the effects of both high varia-
bility in recruitment about the stock-recruitment relationship as well as
diffusion. Thus, of the seven estimation methods, EM 4 would be con-
sidered best for hindcasts and short-term forecasts given the balance be-
tween realism and complexity/number of estimable parameters.

The simpler estimation methods did not outperform the more complex
methods when the true number of sub-stocks was less than 10. Overall, if
the likelihood that there are 10 or 1 sub-stock is about equal, the benefits
of assuming too many sub-stocks exceeds those associated with assuming

Fig. 6. MAREs for, and, the probability that the estimate of spawning stock biomass by sub-stock in years 2, 50 and 55 exceeds the true value by 40% or more, the
probability that the estimate of spawning stock biomass by sub-stock in years 2, 50 and 55 is less than the true value by 40% or more for the base-case scenario and
selected sensitivity scenarios. The horizontal lines for each output are the results for EM 1 for the base-case scenario. The symbols in the upper left corner of each
panel denote the base-case scenario (BC) and the sensitivity scenarios (See Tables 3–5).
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too few sub-stocks. The study did not examine the case where the as-
sumed boundaries between sub-stocks are incorrect, which should lead to
poorer estimation precision because of increased mis-specification be-
tween the population model on which the estimation method is based and
the true underlying population structure, and should be the focus of fu-
ture research. In addition, the paper only considers diffusion as the me-
chanism linking sub-stocks for animals aged 1 and older. Future work
should consider more complex spatial arrangements (e.g. following those
examined by McGilliard et al., 2015).

The absolute values of the MAREs should be considered with cau-
tion because the estimation methods had information that would not be
available in reality, including the correct values for biological para-
meters such as maturation rates and weight-at-age, the correct forms for
diffusion as a function of distance, and the form and parameters of the
sampling distributions for the data. However, the relative values for the
MAREs (and the probabilities of errors> ±40%) are informative
about the relative performance of the estimation methods and what is
estimable. EM 1 and EM 2, which pool data spatially performed poorest
for almost all of management quantities and scenarios. Adding some
spatial structure by dividing the region to be assessed into two assess-
ment sub-stocks (i.e. EMs 2 and 5) did not substantially improve esti-
mation performance. Only when five (or ten) sub-stocks were con-
sidered in the assessment did performance improve markedly. These
results suggest that assessments that aim to estimate hindcast biomass
and need short-term projections should more routinely be based on
population dynamics models that include spatial structure.

Relatively few studies have examined estimation performance of
spatially-explicit stock assessments for small pelagic fishes. Kell et al.
(2009) explored the implications of uncertainty in stock structure on es-
timation performance of stock assessment methods for herring in the
eastern North Atlantic, where the assessments are based on Virtual Po-
pulation Analysis rather than integrated analysis, as examined here. The
simulations explored scenarios in which the assessment boundaries mat-
ched the stock boundaries and in which there were differences. Kell et al.
(2009) considered situations in which there was diffusion among sub-
stocks. In common with this study, simulated assessments were found to
be biased when data from multiple sub-stocks were pooled. Kell et al.
(2009) also noted that pooling data spatially meant that the ability to
detect overexploitation of stocks was reduced (their Fig. 4), a result also
inferred by the present study. Benson et al. (2015) conducted closed loop
simulation (aka Management Strategy Evaluation) to examine the man-
agement-related implications of uncertainty about abundance and dy-
namics of Pacific herring. Benson et al. (2015) also considered im-
plementation error caused by fleet spatial distribution patterns. Counter
to expectations, they found that these effects did not always lead to in-
creased risk to the resource under the fleet-scenarios they considered.

For species such as Pacific herring that may or may not exhibit clearly-
defined spawning aggregations, the challenge remains to develop guide-
lines for cases where the sub-stock structure is unclear and unidentifiable
using genetic or non-genetic methods. The benefits of adopting a spa-
tially-structured approach to stock assessment are reduced, but not
eliminated, when data quality is reduced, at least within the range of data
quality and precision considered in this paper. The challenge remains to
develop guidelines for cases where the sub-stock structure is unclear and
unidentifiable using genetic or non-genetic methods.

The factors that had the most marked impacts on estimation per-
formance were stochasticity in diffusion rates, time-varying natural
mortality in reality, but not in the estimation method, and skipped
spawning. Little is known of the process of connectivity in species such
as Pacific herring, but large changes in spawning biomass by spawning
site are common, at least in the modern era (Hay et al., 2008, 2009),
which could be attributed in part to stochastic diffusion. In contrast,
some assessments of Pacific herring in Canada already include time-
varying natural mortality, indicating its likely relevance for population
dynamics. However, this was not included in the estimation methods
examined in this paper owing to computational demands and to keep

the number of results at a reasonable level. Skip spawning is thought to
be underestimated across a wide suite of species, including herring
(Rideout and Tomkiewicz, 2011; Engelhard and Heino, 2005, but see
Kennedy et al., 2011). Given the influence of these dynamics on esti-
mation performance, they warrant further investigation.

As expected from other simulation studies, spawning stock biomass
was most precisely and accurately estimated for the years where data
on age composition and estimates of spawning stock biomass are
available. It might have been expected that spawning stock biomass
expressed relative to unfished spawning stock biomass would be esti-
mated fairly robustly, but that was not the case. This can be attributed
to there being no data for years when fishing intensity was sufficiently
low that the stock was close to its unfished level, ∼

−∞D , for several years,
a common situation for species such as herring that have been the
subject of intensive harvesting for hundreds of years (Jones, 2000).
Improved estimates of ∼ ∼

−∞D D/last in simulations in which data are as-
sumed to be available from the start of the fishery (results not shown)
confirm this conclusion.

Forecast biomass is estimated with much greater error than for the
years with data, with the extent of error increasing monotonically with the
time since the last monitoring data are available (Supplementary Table 1).
In fact, the advantage of correctly knowing the spatial structure is lost
when the aim is to estimate biomass 2–3 years beyond the end of the time-
series of data on spawning stock biomass and catch age-composition. The
consequences of this error can be evaluated using Management Strategy
Evaluation (Punt et al., 2016), which we intend to do in future work.

Overall, the results of this study further support efforts to develop
spatially-structured population dynamics models for small pelagic fishes,
particularly when there is a reasonable likelihood of identifying species
sub-stocks for inclusion in the assessment. However, the performance of
estimation methods become poorer when 2–5 year forecasts are con-
ducted, and when there is interest in spawning stock biomass relative to
the unfished level. This is unfortunate because management advice for
some pelagic fishes are currently based on forecasted biomass and
spawning stock biomass relative to the unfished level.

The study was not designed to identify the reasons for the better
performance of the more complex estimation methods, but it is clear
that this study (even for the most data-poor sensitivity scenario) was
based on an operating model in which there was sufficient data by sub-
stock to support applying models at this level. Thus, analysts wishing to
consider whether it is appropriate to move to a more spatially-struc-
tured assessment should consider the amount and quality of data by
assessment sub-stock. Nevertheless, it is clear that there is value in
examining alternative models in which there is sub-stock structure to
determine whether the results are qualitatively as well as quantitatively
different from those from standard spatially-aggregated approaches. A
key future direction is to conduct further research to define guidelines
for when assessments should be based on spatially-structured assess-
ment methods given such assessment methods are now available and
are computationally feasible. Further, research to consider impacts of
fishing and drivers of change with explicit reference to spatial scale is
needed to better address multiple fisheries management objectives
(social, economic and ecological). Improved insight on these issues
should help the agencies who are tasked to conduct assessments make
decisions regarding data collection and allocation of resources.
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